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ABSTRACT 

Let G be a fixed graph and let X c  be the number  of copies of G con- 
tained in the random graph G(n,p). We prove exponential bounds on 

the upper tail of XG which are best possible up to a logarithmic factor in 
the exponent. Our argument relies on an extension of Alon's result about 

the maximum number  of copies of G in a graph with a given number  of 

edges. Similar bounds are proved for the random graph G(n, M) too. 
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1. In t roduc t ion  

Let G = (V(G), E(G)) be a fixed graph. By a "copy" of G in another graph F 

we mean any, not necessarily induced subgraph of F, isomorphic with G. We 

use the notation vc = IV(G)I and ec = IE(G)I for the numbers of vertices and 

edges. (For typographic reasons we sometimes write e(G) instead.) We assume 

that eG > 0. 

As usual, G(n,p) denotes the random graph with n labelled vertices and the 

edges added randomly, such that each of the (~) possible edges exists with 

probability p, independently of the other edges; see e.g. [11]. Let Xc  be the 

number of copies of G contained in the random graph G(n,p). 

The distribution of XG has been studied extensively since the pioneering 

paper by ErdSs and R@nyi [6], where the first results were given. A general 

threshold for {Xc > 0} was established by Bollobgs [3] at p = n -1/ma, where 

mG := maXHC_G eH/VH, with XG asymptotically Poisson at the threshold for 

the so-called strictly balanced graphs. The asymptotic normality of Xc  for a 

wide range of p (as long as pn 1~me --+ oo and n2(1 - p) --+ oc) was proven in 

[20]. 
Next, it was shown that the lower tail of the distribution of XG decays ex- 

ponentially in the expectation of the least expected subgraph of G, see [10] 

(P(XG = 0)) and [9] (the general case). Namely, let ~H := nV'P e~ , which is 

roughly the expected number of copies of H in G(n,p). Then, for all e C (0, 1], 

with c~ > 0 depending on G and e, 

(1.1) P ( X c  <_ (1 - e)EXG) _< exp(-c~ min ~H). 
HC_G, eH >0 

This is best possible, provided p stays away from 1, as by the FKG inequality, 

- l o g P ( X G  = 0) _< - l o g P ( X H  = 0) = O(~H) for every H C_ G. It is easy 

to see that minHcr ~H is achieved by H = G for small p, and by H = K2 for 

large p. For some graphs these are the only two cases, but there are graphs G 
2 for which as many as ~vc subgraphs give the minimum for different ranges of 

p [21]. For more on small subgraphs of random graphs see [11]. 

Estimate (1.1) has found numerous applications within the theory of random 

graphs (see [11]). In the nineties, in the course of study of Ramsey properties of 

random graphs ([18, 19]) a need for a similar upper tail bound was articulated 

(see Appendix B for a typical application). So far only some ad hoc techniques 

have been used to obtain partial results. Spencer [22] gave bounds on the upper 

tail not only for Xc  but also for the number of copies of G extending a given 

set of vertices. For balanced graphs and with some restrictions on the range of 
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p, Vu [24] derived an upper bound of the form: 

P ( X c  > (1 + e)EXG) < e x p ( - c ~ / ( v a - 1 ) ) .  

In the same paper Vu also gave a general lower bound: 

. . . . .  il~ P ( X c  _> (1 + e)EXG) > e x p [ - ~  G log(l/p)),  

where c~  is the fractional independence number of G (see Appendix A for 

definition), and noticed that  for stars G = Ki,k it essentially matches the upper 

bound. He also asked under what circumstances the exponent in the upper 
...il~ bound could be improved to - c ~  a , essentially matching the lower bound. 

(Actually, Vu's lower bound is not always correct, because the construction 

in [24] may require more than n vertices; cf. the complete result for stars in 

Corollary 1.8 below. It is correct at least when p is so small that  �9 aa = O(n), 

and (for all p) when a~  = vc/2, for example, for regular graphs.) 

Several techniques to bound the upper tail are surveyed in [12], see also [11]. 

Most of the methods do not give optimal results, but for the graphs K4 and 

C4 and some ranges of p, upper bounds matching Vu's lower bound (up to a 

factor O(log(1/p)) in the exponent) were found in [13] and [12]. Almost optimal 

results have also been obtained by Kim and Vu for K3 [15] and K4 (personal 

communication), and by Panchenko [17] for cycles. Some related results on the 

upper tail of the number of triangles in different models of random graphs are 

given in [5]. 

In this paper, we prove upper and lower exponential bounds on the upper 

tail of Xc  for all G and all p, which match up to a factor O(log(1/p)) in the 

exponent. Our main probabilistic result can be stated as follows. 

Let N(F, H) be the number of copies of H in another graph F and let 

N(n, m, H) be the maximum of N(F, H) over all graphs F with VF _< n and 

eF < m. In other words, N(n, m, H) is the largest number of copies of H that  

can be packed in n vertices and m edges. Recall that  ~T/H :---- nV~p e~ , and let 

(1.2) 
max(m_< ( 2 ) : V H C - G N ( n , m , H ) < - ~ H } ,  P>_n -2, 

M~ = MS(n'P) := 1, p < n -2. 

The reason for the special definition in the extreme case p < n -2 (when @K2 = 

n2p < 1) is to prevent M~ = 0. Since N ( n , I , H )  = 0 unless eH ~_ 1, it is easily 

checked that  1 < M~ _< (2)" 

Remark 1.1: It suffices to consider in (1.2) connected subgraphs H C_ G, be- 

cause if H is the disjoint union of two subgraphs H1 and/ /2 ,  then qJ u ---- k]~ H1 ff2 H2 
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while N(F, H) <_ N(F, H1)N(F,/-/2) for each F and consequently N(n, m, H) <_ 
N(n, m, H1)g(n, m,/-/2). 

THEOREM 1.2: For every graph G and for every t > 1 there exist constants 
c(t, G) > 0 and C(t, G) > 0 such that for all n >_ va and p 6 (0, 1) 

P ( X c  _> tEXa) ~_ exp{-c(t,G)M~(n,p)), 

and, provided tEXa <_ N(Kn, G), 

P(Xa >_ tEXa) >_ p C(t'G)Mh(n'p). 

If tEXG > N(Kn, G), the probability is trivially 0. Note that the condition 

tEXr <_ N(Kn,G) is equivalent to tp eG <_ 1, so, for fixed t, we only have to 

consider p bounded away from 1. 

Our proof is not strong enough to yield sharp estimates of the dependence 

of c(t, G) and C(t, G) on t, see Remark 8.2. We are mainly interested in 

the case of constant t, for example t = 2, and the theorem then says that 

logP(Xv _> tEXG) equals - M ~  up to a factor that is at most O(logl/p). 
Theorem 1.2 is proved in Sections 2 (upper bound) and 3 (lower bound). It 

turns out that the same result holds with no essential modifications for the 

random graph G(n, M) too, see Section 4. 

To apply Theorem 1.2, it is crucial to have a fair estimate of the extremal 

parameter N(n, m, H) for every graph H C G in order to estimate M~. This 

leads to the combinatorial part of this paper. 

Let a~  be the fractional independence number of H (see Appendix A for the 

definition and basic properties of a~) .  Noga Alon proved in his first published 

paper [1] (see also [7]) that N(m, H) = O(m a;~), where N(m, H) = N(oc, m, H) 

is the analogue of N(n, m, H) without restricting the number of vertices. Here 

and below, a = O(b) means that cb < a < Cb for some positive constants c and 

C that may depend on the considered fixed graph (G or H) but not on any 

other parameters such as m, n or p. The next theorem, which is our main graph 

theoretic result, extends Alon's estimate. 

THEOREM 1.3: For every graph H without isolated vertices, and for all m >_ eu 
a n d  n > VH, we  have  

{ ~ 
O(m ~) i fm <_ n, 

(1.3) N(n,m,H) = O(mV'-~*'u 2~*'-v') i fn <_ m <_ (~), 
v .  ) i t  m > 
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The first case above (m _< n) is equivalent to Alon's result, while the last 

case is trivial and stated here just for completeness. Theorem 1.3 is proved in 

Section 5. 

Remark 1.4: As an immediate consequence of (and a supplement to) Theorem 

1.3, if H has v0 isolated vertices, then (1.3) remains valid for m > n, while for 

m _< n we have N(n ,  m, H)  = O(ma*~-VOnV~ 

The obtained bounds on N ( n , m , H )  translate to the parameter M~(n ,p) ,  

so vital for Theorem 1.2. Recall that  mG := maxHce  eH/VH, and note that  

p < n -1/'~G if and only if minHca ~H < 1. Further, let AG be the maximum 

degree of G. It is easily seen that  m a  < AG/2  < A c .  

THEOREM 1.5: For every graph G and n >_ vG we have 

O(1) i f  p <_ n -1/'~G, 

(1.4) M~(n ,p )  = O(minHcG~1/~*~H J i f n -1 /~G - - P - -  < < n--1/A~, 
O(n2p AG) if  p >_ n -1/~G . 

Remark 1.6: Note that  minHcG ~ ; ~  is achieved by a connected subgraph of 

G. Indeed, if H = H1 U H2 C_ G is a disjoint union of two subgraphs of G and 

(nV,pe~) ~ < (nV~peH,)c~ for both i = 1, 2, then we get a contradiction by 

multiplying the two inequalities. Hence k ~  a~ > ~T'l/a;~ for i = 1 or 2. 

Moreover, for p < n -1~At as in (1.4), it suffices to consider H with e H >  O, 

~r'l/a*~ nl+l/~Cp ffl"l/a'~ where K K1 Av is a since otherwise ~tf  = n > = = 

maximal star in G. 

Combining Theorems Theorems 1.2 and 1.5, we find upper and lower bounds 

for P(XG >_ tEXG)  expressed in terms of n and p. Note that  they are similar 

to, but clearly distinct from, the lower tail estimates in (1.1), see Remark 8.3. 

We state explicit results for some particular classes of graphs. We consider 

below only p >_ n - 1 / n ~  , since otherwise M~ = O(1) by Theorem 1.5. First, for 

k-regular graphs the formula for M~ is indeed very simple. 

COROLLARY 1.7: IE G is a k-regular graph, then M~ = O(n2p k) for all p 

n -1/ma = n -2/k . More generally, for a graph G we have M~ = O(n2p k) for 

all p > n -1~rag if  and only i f  AG = k and G has a k-regular subgraph. In 

particular, i [ G  is connected, then M~ = O(n2p k) for all p >_ n -1/ma if and 

only i f  G is k-regular. 

However, for other graphs, we may have different expressions for M~ for 

different ranges of p. Below we give two examples of that.  
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COROLLARY 1.8: Let G be the k-armed star Kl,k, with k >_ 1, and assume 
p > n -1~me = n -1-1/k. Then 

O(nl+l/kp) i f  p<_ n -1/k, 
(1.5) M~ ---- O(n2pk ) i f  p >_ n -1/k. 

COROLLARY 1.9: Let Pk be the path on k vertices, i.e. of length k - 1, and 

assume p >_ n-1/mv~ = n -1-1/(k-1). Then, i f  k >_ 3 is odd, 

2 k 2k--1 
M* = O(n ~+lp -t-+-~) i fp  <_ n -1/2, 

Pk O(n2p2) i f  p >_ n -1/2, 

and, i f  k > 4 is even, 

2 2 k - l  O(n p -v-~ ) i f  p <~ n -1, 
M* = 2k-1 2 k-2 Pk O(n --v--. p 7=-. ) i f  n -1 <_ p <_ n- l~ 2, 

O(n2p 2) i f  p >_ n -1/2. 

Note that P2 = K2 is covered by Corollary 1.7 or 1.8, and quite different. 

Theorem 1.5 and its corollaries are proved in Section 6. 

It is easily seen that for any G we have a pattern of the same type as in 

the corollaries above; M~(n,p)  is always given by a sequence of one or several 

expressions of the type O(napb), each expression valid for a certain range of p. 

This is further explained in Section 7. 

ACKNOWLEDGEMENT: This research was initiated after the third author gave 

an invited talk at the VII-th Conference on Probability in Btdlewo in May 

2002 to an audience including the second author, and then carried on through 

the summer in pairwise collaborations made possible by the Pacific Institute of 

Mathematical Sciences, Vancouver (Thematic Programme on Asymptotic Geo- 

metric Analysis), and the Isaac Newton Institute for Mathematical Sciences in 

Cambridge, U.K. (Programme on Computing, Probability and Combinatorics). 

We would like to thank the organizers of these meetings and programs for invit- 

ing us there, as well as the sponsoring organizations for financial support. 

We are also very grateful to Van Vu for sending us his most recent manuscripts 

and to Noga Alon, Laci Lovs and Bruce Reed for providing us with some 

relevant reference information. 

Finally, we acknowledge that the construction in Example 7.8 was found after 

massive experimentation with Maple. 



VOI. 142, 2004 U P P E R  TAILS FOR SUBGRAPH COUNTS IN RANDOM GRAPHS 67 

2. P r o o f  of  t h e  u p p e r  b o u n d  

It will be convenient in the proof to count ordered copies of G, i.e. copies of 

G with the vertices ordered in some way, consistent with a fixed ordering of 

the vertices of G. Equivalently, an ordered copy of G in F can be regarded 

as an injective mapping of V(G) into V(F) that  maps edges into edges. We 

let Yc denote the total number of ordered copies of G in G(n,p). Note that  

Yc = aut (G)Xa,  where ant(G) is the number of automorphisms of G, and thus 

P(YG _> tEYG) = P(XG > tEXa).  

For convenience, we also extend the definition of N(n, m, H) to non-integer 

rn; clearly N(n, m, H) = N(n, [mJ, H). We will use a simple estimate. 

LEMMA 2.1: For every H with eH > 0 there is a constant CH such that if 

n >_ VH and 0 <_ ml < m2 <_ (~), then 

m l  
N(n, ml,  H) <_ C u - - N ( n ,  m2, H). 

m2 

Proof." This can be shown directly from the definition, but for us it is simpler to 

see that  it is an immediate corollary of Theorem 1.3 and the obvious inequalities 

1 <_ c~* H < VH -- 1. (The case ml < e H  is trivial, since then N(n, mx, H) = 0.) 
| 

Let G1,...  ,Gf,  f = (n)vc, be all ordered copies of G in the complete graph 

Kn on the labelled vertex set [n] = {1 , . . . , n} .  Furthermore, for i = 1 , . . .  , f ,  

set Y /=  1 if Gi C G(n,p) and Y/=  0 otherwise. Thus Ya = ~ i  Yi. 

Set pH := EYH = (n)v,p e" = O('~H). We will first show by induction that  

for all m = 1 ,2 , . . .  

(2.1) ( l  +vG! E N(n, (m_-- l)ea, H)~ m-1 
EYe<_ P3 \ HC_G #H ] 

The above sum extends over all subgraphs H of G with eH> 0. It is trivially 

true for rn = 1. 

For m > 2, we set F = F( i l , . . .  , i ra-l)  = Gil U ... U Gi ..... 1" The number 

of copies of G which are edge-disjoint from F is bounded, crudely, by (n)vG, 

while the number of copies of G which intersect F on a given subgraph H can 

be bounded as follows: there are at most N(n, eF, H) <_ N(n, (m - 1)ea, H) 

choices of H in F,  at most (n-vn)vc  -v~ = (n)vc / (n)~  choices of the remaining 
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vertices in G and, finally, at most va! orderings. Hence 

il , . . . , ira- 1 im 

E pe(F)((n)VGpeG "~- E E peg--ell) 
it ,...,ira-- 1 H C_G G, AF~H ( "o) 

-< E / ( F )  #a+va! E N(n,(m-1)ea,H)-~-~ 
il ,...,ira-1 H C G 

= Ey~-I.#G 1 + va! E #-H- ' 
HCG 

and (2.1) follows by induction. 

By Markov's inequality, we then have 

(2.2) P(Ya >_t#a) <_t-m(l +va! E N(n'(m-'--1)ea'H)) m-1 
HCG #H 

rc'M*l with c' = c'(G,t) < 1/ea chosen below. We For p _~ n -2, choose m = , a , ,  

then have by Lemma 2.1 and the inequality N(n, M~, H) <_ ~H, 

N(n, (m - 1)ea, H) <_ N(n, c'M~eG, H) <_ Cuc'ea N(n, M~, H) 
~H ]-tH #H 

< t ~IIH t nVH 
_ _  CHC eG = CHC eG ~ 

#H [n)vn 
! rtVG VG 

< CHC C G - -  < CHC'CG vG 
- ( n ) v G  - v v ! "  

Hence, if c' = (eGv~ a ~HC_G CH) -1 min( tl/2 - 1, 1), then 

1 + ve! E N(n,c'eaM~, H) <_ tt/2 ' 
HCG ~H 

,1 log t. The and (2.2) yields the upper bound in Theorem 1.2, with c(t, G) = c 
exceptional case p < n -2 is trivial with m = 1. | 
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3. P r o o f  of  the  lower b o u n d  

The lower bound in Theorem 1.2 will be a consequence of the following result. 

As in the proof of the upper bound, YH stands for the number of ordered copies 

of H in G(n,p) .  

THEOREM 3.1: Suppose that 0 < p < 1 and n >_ VG. I f  there exist H C_ G, 

t > 0 and m such that 

N(n ,  m, H)  >_ 2tq2H, 

then 
1 m ' e P(Ya  >_ tEYa)  >_ -~p "- o. 

To prove Theorem 3.1 we will use a lower tail estimate for a sum of indicator 

random variables. It is a consequence of the following Paley-Zygmund type 

inequality (see, e.g., [14, p. 8]) which generalizes a strengthening of Chebyshev's 

inequality (see, e.g., [11, page 54, Remark 3.1].) We include a simple proof for 

completeness. 

LEMMA 3.2: Let X be a random variable with EX > 0 and EX 2 < oc. Then, 

for every 0 < 5 < 1, 

P ( X  > S E X )  _> (1 -5 )2  (EX) 2EX_~" 

Proof." Let 1E denote the indicator of an event $. We have XI{x<~EX} ~_ 

SEX ,  and thus 

E ( X I { x > s E x } )  = E X  - E ( X I { x < j E X ) )  >_ E X  - SEX.  

The Cauchy-Schwarz inequality now gives 

((1 - 5)EX) 2 _< (E(XI{x>aEX}) )  2 <_ EX 2 P (X  > 6EX). | 

LEMMA 3.3: / f  X = EiN_I Xi, where Xi are arbitrary indicator random vari- 

ables with EXi = P(Xi = 1) = Pi _ Po for some Po >_ O, then 

1 1 
P ( X > - ~ N p 0 ) > _ P ( X >  E X ) > ~ p o .  

N Proof.' Clearly, E X  = ~i=1 Pi >_ Npo. Moreover, by the Cauchy-Schwarz 
inequality, X 2 _< N ~N_ 1 X 2, and thus 

N N 

EX 2 _< N E E X 2  : N E E X ~  : N E X .  
1 1 
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Hence, by Lemma 3.2, 

I N  ~ (EX)2 > EX > ~po. 
P ( X > ~  po )_>P(X>  E X ) >  4EX2 _ 4N - 

Proof of Theorem 3.1: 
eF ~_ m and such that 

| 

By assumption, there exists a graph F C_ K n with 

N(F, H) >_ 2t~H > 2tEYH. 

We fix one such subgraph F of Kn. Note that F contains many more copies of 

H than G(n,p) does on average. Thus our strategy will be to guarantee that 

G(n,p) D F, and, using the lower tail estimate of Lemma 3.3, that a fraction 

of the expected number of extensions of these copies of H to copies of G will 

indeed appear in G(n,p). 
Fix one copy of H in G and ignore the other copies of H, if there are any. 

Then each ordered copy of G in another graph contains a unique corresponding 

ordered copy of H. Call a copy of G in Kn F-rooted, if this distinguished copy 

of H is a subgraph of F. Note that there are precisely aut(H)N(F, H) ordered 

copies of H in F, and thus 

N := aut(H)N(F, H)(n - VU)va--VH 

F-rooted copies of G in Kn; we denote them by G1, . . . ,  GN. Note also that 

(3.1) Np ec-e" >_ 2tEYu(n -- Vs)vG--v,p ec-e" = 2tEYG. 

Let GF(n,p) be the random graph G(n,p) conditioned on G(n,p) ~_ F, i.e. 

the random graph obtained by adding to F each of the remaining (~) - e F  edges 

with probability p, independently of the others. Let Zi be the indicator that 

GF(n,p) contains Gi. Then 

e ( z i  = 1) = pe(G,\F) >_ peC-~,, 

and thus, by Lemma 3.3, 

(3.2) - ~ p I G(n,p) 2 F) >_ P Ei=l zi > Np eG-e" 

_> ~p ~-~- _> ~p 

Consequently, by (3.1) and (3.2), 

1 ea P(YG >_ tEYc) > P(YG >_ NP ~c-~") >_ ~P P(G(n,p) ~_ F) 

= ~peCpeF ~ ~pec+m. | 
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To complete the proof of the lower bound in Theorem 1.2, note first that, by 

the definition (1.2) of M~, there exists H C_ G such that N(n, M~ + 1, H)  > 

~H,  except when M~ = (~). It follows from Lemma 2.1 that  with C' = 

4 maxHC_G CH, either 

N(n, C'tM~, H) >_ 2tN(n, 2M~, H) >_ 2tN(n, M~ + 1, H) > 2t~H 

or C'tM~ > (2). In the second case, the lower bound is a consequence of the 

inequality 

(3.3) P(XG > tEXG) >_ P(XG = N(Kn, G)) >_ P(G(n,p) = Kn) = p(~) 

and thus 
P(XG >_ tEXG) >_ pC'tM~. 

In the first case, Theorem 3.1 yields 

1 C'tM~+ea > 1 C"tM~ P(XG >_ tEXa) > ~p _ 4 p 

with C" = C'+ev, and it remains only to take care of the factor 1/4. I fp  _< 1/2, 
we can use 1/4 >_ p2 > p2M~ and the result follows. 

For p > 1/2 we note that  Lemma 2.1 implies that if c' = 1/maxHqG CH, 
then for every H C_ G 

and thus M~ _> c' (~)peC > 2-eG c' (~). Consequently, the result follows again 

from (3.3). II 

4. Subgraph counts in G(n, M) 

In this section we consider the random graph G(n, M) with n (labelled) vertices 

and M edges, chosen uniformly at random from all sets of M edges in Kn. 
n (Here n and M are integers with 0 < M _< (2)') Thus, XG now denotes the 

random variable which is the number of copies of G in G(n, M). Note that . the 

maximum possible value of XG is N(n, M, G). 
It is well known that in many respects, G(n,M) and G(n,p) with p = M/(~) 

behave similarly, see [11, Section 1.4]. For example, this is true for the property 

XG > 0 of containing a copy of G. Under some mild restrictions, the lower tail 

estimates carry over from G(n,p) to G(n,M), see [11, Section 3.1]. It is not 

obvious that this correspondence holds also for the upper tails, but indeed it 

does. We have the following version of Theorem 1.2 for G(n, M). 
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THEOREM 4.1: For every graph G and for every t > 1 there exist constants 
c(t, G) > 0 and C(t, G) > 0 such that for all n >_ vG and eG <_ M <_ (~), with 

p := M/(2),  
P(XG >_ tEXG) <_ exp{-c( t ,  G)M~(n,p)}, 

and, provided tEXG <_ N(n, M, G), 

P(XG _> tEXG) >_ pC(t,G)M~(n,p). 

Proof: Note first that, taking H = / ( 2  in (1.2), 

(4.1) M~ = N(n, M~, K2) _< ~ 2  = n2P = O(M). 

For the upper bound we follow the proof in Section 2, now taking expectations 

for G(n, M). Let again #H ::  (n)vnP e" but observe that this now is only an 

approximation to EYH. We have 

EYG = (n)va (M)eG 

and thus, by simple estimates, 

(4.2) #G ( 1 -  (2G)M---- ) <_EYG<_#G. 

Similarly we see that  EY~ n is not larger for G(n, M) than for G(n,p). Hence 

(2.1) still holds. By Markov's inequality we now have 

.~EY~ ( #c ~m 
P(YG >_ tEYa) < t -  m ~ ]  ' 

#a 

yielding the same estimate as in (2.2), except for a factor (#G/EYG) m. 
If pG/EYG <_ t 1/4, say, this completes the proof of the upper bound as in 

Section 2. 

If t 1/4 < #G/EYG, (4.2) implies t = 1 + O(1/M) and thus by (4.1) 

(t - 1)2M~ = O((t - 1)2M) = O(t - 1) = O(logt).  

Taking c(t,G) = o ( t  - 1) 2 with Cl small, we thus have c(t,G)M~ <_ logt and 

our bound follows by Markov's inequality P(XG >_ tEXG) < 1/t. 
For the lower bound, we note first that if we choose a subgraph F C_ Kn with 

eg = M and N(F, G) = N(n, M, G), then, using Stirling's formula, 

(4.3) 

> P(G(n,M) D F ) =  > (P) P(XG N(n ,M,G))  
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In the case p _> 1/2 we have M~ = O(n 2) = O(M) by Theorem 1.5, and 

the lower bound follows by (4.3), if we note that the assumption tEXG <_ 
N(n,M,G) <_ N(Kn,G) implies that p <_ c'(t,G) for some c'(t,G) < 1. 

Assume now p < 1/2. By Lemma 2.1 and the argument in Section 3, there 
exists a subgraph H C G and a constant C' = 2e~ such that either 

(4.4) N(n, ,~P'tM*G, H) > 2e(G)+2tff2H >_ 2e(G)+2tEYH 

or C'tM~ > (~). In the second case, and more generally if C'tM~ >_ M/2, the 

lower bound follows again from (4.3). 

In the remaining ease, (4.4) holds and C'tM~ < M/2. Now fix a graph 

F C_ Kn with eF <_ C'tM~ < M/2 such that 

(4.5) N(F, H) >_ 2e(O)+etEYu. 

We condition on F C_ G(n, M), which means that we consider the random graph 

GF(n, M) obtained by adding M - eF >_ M/2 random edges to F. We count 

F-rooted copies of G as in the proof of Theorem 3.1 in Section 3, now with 

P(Zi = 1) >_ (1 + O(M-1))(p/2) e(c'\F) >_ 2-~G-lp ~G-eH, 

if M is large enough. Denoting the number of F-rooted copies of G in Kn by 
N as before, we now have by (4.5), instead of (3.1), Np eG-eH >_ 2ec+2tEYG. 
Consequently, just as in Section 3, 

N 

-~E ~ Zi ~ N2 -e~ ~ tEYG, 
i=l 

and the result again follows by Lemma 3.3, since 

P(G(n, M) D F) > (p/2) eF > (p/2) M/2. | 

5. P r o o f  o f  T h e o r e m  1.3 

We follow [7] with minor modifications. Consider the linear programming 

problem of finding Xv, v E V(H), that maximize ~ v  xv subject to constraints 

(5.1) 0_<xv<_logn, v E V ( H ) ,  

and 

(5.2) xv+xw_<logm,  vwEE(H) .  
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Let -~ = 7(n, m, H)  be the maximum value of ~ v e v  x~. 

Given an optimal solution x. ,  v E V(H),  we construct a graph F by blowing 

up each vertex v E V(H) to a set of nv = [ceXvl vertices, where c is a small 

constant depending on H only (c = VH 2 will do). In other words, let V(F)  = 

UvEV(H) Vv, where Vv are disjoint sets, IVy] = nv, and the pair (Vv, Vw) spans 

a complete bipartite graph if vw E E(H) and the empty graph otherwise. It is 

clear by the above constraints that VF <_ n, eF <_ m, while 

N(F,H) > 1-In  >_ cV"e 
v 

Conversely, consider the dual linear programming problem which is to find yv, 

v E V(H), and z~, e E E(H), that minimize 

log n + ze log m 
v e 

under the constraints 

(5.3) Yv,Ze_>O, v E V ( H ) ,  e E E ( H ) ,  

and 

(5.4) Yv + E Ze >1, v E V(H). 
e ~ v  

Let (Yv) and (ze) denote an optimal solution. Then, by the duality theorem 

(see, e.g., [16]), 

(5.5) E yv l~ + E ze logrn = % 
v e 

Let F b e a g r a p h w i t h v F  _< n a n d e F  <_m. For any partition V = V(F) = 

U~ev(H) Vv, let }/Y be the set of all ordered copies of H in F with each v E V(H) 
mapped to a vertex in the corresponding set V.. An elementary application of 

the probabilistic method (see, e.g., [7, Proposition 1.3]) yields that there is 

always a partition with 

(5.6) ]l/Y] _> VHV'N(F,H). 

Let us fix one such partition. Define a hypergraph kV' on V by 

W' = { V ( H ' ) :  H '  E l/Y}. 

Since each H '  E I/V is determined by V(H'), we have ]W'] = ]l/V]. 
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For a subset U C_ V define the trace of }4;' on U by 

Tr(W' ,U)  = {W rh U:  W �9 W'} = {V(H') rh U :  H '  �9 W}. 

Let t be a large integer and let Sv = [y~t], ue = [zct], where we recall that  

(y.) and (z~) is a solution satisfying (5.5). We form a sequence U1,. . . ,U~ 

of subsets of V by taking each V~ precisely s~ many times and each V~ U Vw 
precisely uv~ many times. Note that,  by (5.5), each vertex v E V, is contained 

in s, + ~ u~ >_ y,t  + ~ z~t > t of these sets. 

By Shearer's Lemma ([4]; cf. [7, Lemma 1.2]), 

(5.7) 
IWl ~ = IW'l ~ ~ H I ~ ( w ' ,  uDI 

j = l  

= I-[ I (W',Vv)l I [  
vEV(H) vwEE(H) 

I aXw ' ,  vv u v,,,)l *'~,,, . 

Now, as Tr04;', Vv) is a set of singletons, I Tr(14; ', V~) _< IV~I ___ vF <_ n, while 

Tr(W', Vv U Vw) is a set of edges of F,  so I Tr04/ ,  Vv U Vw)l <_ eF <_ m. Hence, 

by (5.7), 

IwL __ If <- II n""+'/' II  mz.,.,,+,/, 
V V W  ~Y V73~ 

as t --+ oc. Finally, by (5.6), 

(5.8) N(F, H) <_ v~" e "Y, 

which implies that N ( n , m , H )  <_ VVH'e'L This, together with the previously 

established lower bound, yields that  

N ( ~ , m , H )  = e(e~).  

It remains to calculate 7, for which we have to further study the system of 

constraints (5.1) and (5.2). In the case m _< n, after rescaling by logm, it 

is straightforward to see that  V = a ~  log m. In the trivial case m _> n 2, the 

optimal assignment is zv = log n for all v, and so 7 = VH log n. 

In the remaining case n < m < n 2, any optimal assignment must satisfy 

xv > logm - logn for all v, because otherwise we could increase an x~ to 

log m - tog n without violating any constraints. Consequently, we may write 

zv = logm - logn + (21ogn - logm)~v, 
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where 0 <_ ~v _< 1. Then the conditions (5.1) and (5.2) become, in terms of 

~v, the standard conditions defining the fractional independence number a}{. 

Hence, in this case, 

= Z xv = (log.  - l ogn )v .  + (21ogn - 1ogre) E 
v v 

= (logm - logn)vH + (21ogn -- log m)a~/. | 

6. Remaining proofs 

In this section we prove Theorem 1.5 and its corollaries. 

subgraphs H C_ G without isolated vertices. 

LEMMA 6.1: For every subgraph H C_ G, 

(6.1) eH <_ Aa(vg  - a ~ ) ,  

and equality holds for at least one H with eH ) O. 

We consider only 

Proof: The inequality follows immediately from Lemma A.1 and the obvious 

fact that  /k H ~ /~G. To obtain equality, let K be a maximal star in G, i.e. 

a vertex v with maximal degree and its Aa  neighbours together with the AG 

edges from v. Then eK = AG, v/( = AG + 1 and a~c = Aa.  | 

Proof of Theorem 1.5: First, i f p  < n -1/ma, then ~H < 1 for some H C_ G. 

Since N(n, ell, H) >_ N(H, H) = 1 > ~H, (1.2) yields M~ < eH < ea (except 

when eH= 1 and M~ = 1). 
_ _ ~l/ot*H Next, assume that  n -1/ma ( p < n -1/~G and let m = minHc_G ~H " 

Taking H C_ G which yields equality in (6.1), we have e g / A a  = VH -- a* H and 

thus 
t~ H = n V H p  eu  < 7~, v H - e H / A G  : nOt*H 

Hence, m _< q2~ ~*H _< n. If m >>_ ea, Theorem 1.3 thus yields that,  for every 

HC_G, 

(6.2) H) = O(m"*H) = O ( r  

and for some H0 C_ G (the one achieving the minimum in the definition of m) 

(6.3) N(n,m,  Ho) = O(m~;~o) = O(~Ho). 

It is now easy to see, by Lemma 2.1, that,  for suitable constants c and C, 

N(n, cm, H) < q2H for all H C G, while either N(n, Cm, Ho) > ~Ho or Cm > 
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(~). Hence, cm <_ M ~  < Cm.  In the case m < eG, we similarly find M~ < C e c  

and thus M~ = O(1) = O(m). 

Finally, assume that  p >_ n -1 / t ' a ,  and let now m = n2pAC; thus m >_ n. If 

m >_ ea,  Theorem 1.3 now yields, for every H C_ G, 

n vH pAa(v.--a*. ) N ( n , m , H )  = O(rnV'-~*Un 9a*~-v') = O( ). 

By Lemma 6.1, we have AG(VH -- a'H) >_ eH for every H C_ G with equality 

for some H0 (at least for H0 = K - -  the maximal star in G). Hence, we again 

have (6.2) for every H and (6.3) for some Ho (ignoring the middle terms), and 

M~ = O(m) follows as before. Finally, in the case m < ca,  we easily find 

M~ = O(1) = O(m). 1 

_ _ , ~ b l / a ; ~  LEMMA6.2: I f  H C G, and p < n -1~At  then x H >_ n2p Aa. 

Proo~ We have e y  < A C V H / 2  <_ AGa* H and thus 

(6.4) 
ffj H / (ne pAc )a*. __ rt VH -- 2a*H peH --Aaa*H 

>_ n v H - 2 a * H ( n - 1 / A a )  eH-Aca*H = n v H - a * H - e H / A c  >_ 1, 

since eH / AG < VH -- a* H by Lemma 6.1. I 

Proo f  of  Corollary 1.7: Suppose that Ac = k and that  H is a k-regular sub- 

graph of G. Then e H =  k v H / 2  and, by Lemma A.2, a ~  = VH/2. Thus 

~ ' ~  = (nv.pkv./2)2/~. = n~/ .  

Consequently, Lemma 6.2 yields, for p <_ n -1/k ,  

rain ~T'l/a*n' = k ~  a*M = n2p k, 
H'CG ~ H '  

and the result follows from Theorem 1.5. 

Conversely, if M~ = O(n2p k) for all p >_ n -1~raG, then Theorem 1.5 implies 

first AG = k and secondly that  for n -1/'~G <_ p <_ n -1/k  there must be equality 

in (6.4) for some H C_ G, which is possible only if eH = kee* H and vg  = 2(~*. 

But then eH = kvH/2;  since A H < A G -- k, this means that  H is a k-regular 

subgraph of G. | 

Corollary 1.8 follows almost immediately from Theorem 1.5, using a~  = k, 

and we omit the details. 

Proo f  of  Corollary 1.9: The case p > n -1/2 is immediate from Theorem 1.5. 
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_ 1 / ~ ; u  and In the case p < n -1/2, let us for ease of notation set ~k := Pk 

Mk-- := minHc_p~ ~H(1/1/~;~ . We claim that if k >_ 3 is odd, then 

(6.5) 2 k , )k--1 n _ l _ l / ( k _ l  ) Mk = n ~:Tip-~=~ if < p <_ n -1/2, 

and if k _> 4 is even, then 

2 2 k-1 n p -7- if n - 1 - 1 ~ ( k - I )  < p < n -1, 
(6.6) Mk = ~-, k-2 n_-l /2-  n 2 ~ - p  2-~-" if n -1 _< p _< 

The result then follows by Theorem 1.5. 

To show (6.5) and (6.6), we observe by Remark 1.6 that we only have to 

consider connected subgraphs H C_ Pk in the definition of Mk. The only such 

H are themselves paths, and thus, for k _> 3, 

(6.7) Mk = rain ~ j  =min(Mk_l ,~2k) .  
2<_j<_k 

I f k i s o d d ,  a* = ( k + l ) / 2 a n d  Pk 

~k (nkpk-1) 2/(k+l) 2 ~__k_ ,~k-_A = = n k+l p- k+~, 

* = k /2  and while if k is even, aRk 

ffgk ( n k p k - 1 )  2 / k  2 2 k-1 

It is now elementary to verify (6.5) and (6.6) by induction using (6.7), starting 

with M3 = min(~r2, ~3) = min(~2, 93) = ~3. | 

7. T h e  p h a s e s  

We study in this section the exponent M ~ ( n , p )  as a function of p, for a given 

graph G. Compare the corresponding results for the lower tail in [11, w We 

use the notation M~ • n~p y for M~ = O(nXpV). 

Let p = n -z  (where z _> 0 does not have to be regarded as fixed). Define 

gH(Z) := (VH -- eHZ)/OdH. Thus q ~ ; ~  = n e'(z), and it follows from Theorem 

1.5 that  

(7.1) M~(n,  n -z)  • n ~(z), 

where 

(7.2) 
f 2 - A a z  

L(z)  := l o i n H g a  gH(Z) 

i f 0 < z < l / A o ,  
if 1/AG <_ z <_ 1 / m a ,  
if l / raG < z. 
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By Remark 1.6, it suffices to consider connected subgraphs H. 

Clearly, L ( z )  is a piecewise linear, continuous function, which is strictly de- 

creasing on [0, 1/rnG]. See the example in Figure t. 

Let q denote (the minimal) number of line segments in L ( z )  for z ~ 1~me .  

There exist real numbers {xi}~, {y~}q and {Zi}l q+l, with xi > 0, y~ > 0 and 

1 l ing  = zl > z~ > . . .  > Zq+l = 0, such that L ( z )  = xi - y iz  for zi >_ z >_ zi+l 

and thus, by (7.1), 

(7.3) M ~ ( n , p )  • nX'p y~ if n -z~ ~_ p ~_ n -z '+l.  

2- 

1.5 

1- 

0.5- 

02 04 06 o s ~',~ 1 ~ \ ~ , ~  ~ 6  18 2 

Figure 1. L ( z )  (thick curve) for P6, with the corners marked by 

circles. The dotted line is 2 - Aaz; the thin lines are gH(Z) for the 

connected subgraphs of/)6; the intersections with the z-axis are in 

order P6, Ps, P4, P3, P2. 

The above intervals for p, or z, will be referred to as the phases of the upper tail 

(of XG,  or G, for short). The interval Ii = [Zi+l, zi] will be called the i-th phase, 

i = 1, . . . ,  q, and in particular Iq = [0, Zq] will be called the last phase. So, q 

stands for the number of phases. For instance, by Corollaries 1.7-1.9, regular 

graphs have one phase, stars (except/(2) and odd paths have two, while even 
paths have three phases of the upper tail (as in Figure 1). 
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If z~ > 1 /Aa ,  then it follows from the proof of Lemma 6.2 that  zq = zl = ma  

and q = 1. Hence, the graphs with only one phase of the upper tail are fully 

characterized by Corollary 1.7, and for all graphs G with more than one phase, 

the last phase is [0, 1/Aa],  i.e. n -1/~c <_ p <_ 1. 

From now on let us assume that  q _> 2, and so zq = 1 /Aa .  For each phase I~, 

i = 1 , . . . ,  q - 1, there exists a (not necessarily unique) subgraph H~ C_ G such 

OL* O~* . that  L(z) =gH~(Z) f o r z  E I ~ a n d t h u s x i  =VH~/ Hi a n d y i = e H ~ /  Hi We 

call these subgraphs Hi the leading subgraphs (for the upper tail). Note that  

the leading subgraphs are the subgraphs H that  can be used in our construction 

for the lower bound in Theorem 1.2 for the respective ranges of p (see Theorem 

3.1). 

Returning to Corollaries 1.8 and 1.9, we see from the proofs that  if G is a 

star or a path, it is itself the unique leading subgraph for the first phase. If G is 

an even path of order k _> 4, the leading subgraph for the second phase is Pk-1 

(unique as an abstract graph, although there are two copies of it in G). For P6 

in Figure 1, the leading subgraphs are thus P6 and Ps. 

7.1.  T H E  SUBGRAPH PLOT. There is another, more graphic way to depict 

the phases. The subgraph plot in [11, w which yields information about the 

phases and leading subgraphs for the lower tail, can be adapted to the upper 

tail. In this version, let QH := (VH/a*H,eH/a*H) E ~2 and consider the set 

E := {QH : H C_ G, eH> 0} in the xy-plane. See Figures 2 and 3 below. 

Note that  m a  is the maximal slope of the lines from (0, 0) to the points in E, 

while, by Lemma 6.1, Aa  is the maximal slope of the lines from (1,0) to the 

points in E. Let L (m) and L (/') be the lines y = m a x  and y = Aa(x  - 1), resp., 

and let C be their common point. Moreover, let D := (2, Aa) .  By the relation 

between ~H and QH, it is easy to see the following. 

There is only one phase for the upper tail of G if and only if C = D, and the 

graphs for which this happens are characterized by Corollary 1.7. Otherwise, 

let A be the point in ENL (m) nearest to C (on the right), and let B be the point 

in E n L (/') nearest to C (on the left). If C E E, then A = B = C and there are 

exactly two phases, corresponding to C and D. The leading subgraphs for the 

first phase correspond to A = B = C in the sense that  QH = C. 

If C ~t E, then there are at least three phases. Our "battlefield" is confined 

to the (geometric) triangle T := ABC. Let E* be the convex hull Conv(E n T). 

The extreme points of E*, ordered with decreasing y-coordinate, form a sequence 

beginning with Q1 -- A and ending with Qq-1 = B. It is then easily seen that  

these extreme points, supplemented by Qq = D, correspond to the phases, in 
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the sense that Qi = (xi,yi) and that the leading subgraphs for the i-th phase 

(1 <_ i _< q -  1) are the subgraphs H for which QH = Qi. Moreover, the slopes of 

the line segments joining the points Q1, . . . ,  Qq-1 form an increasing sequence 

strictly contained between mc  and AG, and their reciprocals are the numbers 

z2, . . . ,zq-1,  which together with Zl = 1 / m a  and zq = 1 /Ae (the reciprocals 
of the slopes of L (m) and L (A)) determine the intervals /1 , . . . ,  [q. Note that 

it follows that the exponents in (7.3) satisfy Xl > x2 > ...  > Xq_l < xq and 

Yl > Y2 > " > Yq-] < Yq, with the monotonicity broken at the last phase. 

In particular (when C ~ D), A and B represent the first and the last but 

one phases. For these two phases we can be more explicit about the leading 

subgraphs. It is seen from the subgraph plot and the definition of Q1 = A 

above that the leading subgraphs for the first phase are the subgraphs H with 

a*g/VH maximal among the subgraphs with eH/VH maximal. 

If G is strictly balanced (see [11] for definition), the leading subgraph in the 

first phase is thus G itself, and it is unique (see Examples 7.1-7.4). If G is 

balanced but not strictly balanced, G may be or not be a leading subgraph in 

the first phase, but is not a leading subgraph in any later phase (see Examples 

7.5 and 7.6). If G is not balanced, then it may only become its own leading 

subgraph at a later phase (see Example 7.7). All of this contrasts with the lower 

tail, where G always is a (unique) leading subgraph in the first phase. 

Similarly, for the last but one phase, the leading subgraphs H are those 

with a*H/VH minimal among the subgraphs with eH/(VH --(~*) =- AG (compare 
Lemma 6.1). The star K = K1,A may or may not be among them (see Examples 

7.2 - 7.7). 

7.2. EXAMPLES. We finish this section with some examples illustrating this 

geometric approach. In each example, we provide the parameters m = rnG, 

A = An, the points A , B , C , D  and Qi = (x~,y~), i = 1, . . . ,q ,  and z l , . . . ,Zq;  

the values of M* = M~ follow from these by (7.3). We also discuss the leading 

subgraphs, and in two cases include figures with the subgraph plots. 

Example 7.1: We choose G = K3 as a graph with just one phase. Here m = 1, 

A = 2 ,  Q I = A = B = C = D = ( 2 , 2 ) , z l  = l ,  a n d M * •  2 f o r a l l p > _ l / n .  

We have not defined any leading subgraphs when there is only one phase; a 

natural definition would be the subgraphs corresponding to C, in this case/(3 

itself. 

Example 7.2: The star G = K1,3 has just two phases (Corollary 1.8). We have 

m = 3/4, A = 3, Q1 = A = B = C = (4/3,1), Q2 = D = (2,3), zl = 4/3, 
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z2 = 1/3. Thus M* • n4/3p for n -4/3 <_ p < n -1/3 and M* • n2p 3 for 

n -1/3 _< p < 1. The only leading subgraph is H = G. 

Example 7.3: Also the path on five vertices G = P5 has two phases with the 

leading subgraph H = G, which, however, is not the star K = K1,A. We have 

m = 4 / 5 ,  A = 2 ,  Q1 = A = B = C = ( 5 / 3 , 4 / 3 ) , Q 2 = D = ( 2 , 2 ) , z l  = 5 / 4 ,  

z~ = 1/2. 

Example 7.4: The path on six vertices G = P6 enjoys three phases with H = G 

and P5 being the two leading subgraphs. Here m = 5/6, A = 2, Q1 = A = 

(2, 5/3), Q2 = B = (5/3, 4/3), C = (12/7, 10/7), Q3 = D = (2, 2), and zl = 6/5, 

z2 = 1, z3 = 1/2. The subgraph plot is shown in Figure 2; the points QH in E 

(for connected subgraphs only) are shown as large crosses, and the lines L (m) 

and L (A) together with E* (in this case the line joining A and B) are added. 

Note that  this figure is dual to Figure 1 (in the sense of projective geometry); the 

points (crosses) in Figure 2 correspond to the lines in Figure 1 and, conversely, a 

line such as A B  through two points in in Figure 2 corresponds to the intersection 

point of the corresponding lines in Figure 1. 

1.5 

0.. = 

Q3 = D / /  
Q = A  

C + 

. . . .  012" 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Figure 2. Subgraph plot for P6. E* is the line AB.  
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Example 7.5: If G is a K3 with an attached pendant vertex, both G and 

the subgraph /<3 are leading subgraphs in the first phase. This graph has 

three phases; K = K1,3 is the unique leading subgraph for the second phase 

n -2/3 <_p<_n -1/3. H e r e m = l , A = 3 ,  Q1 = A = ( 2 , 2 ) , Q 2 = B =  (4/3,1), 

C = (3/2,3/2), Q3 = D = (2,3), zl = 1, z2 = 2/3, z3 = 1/3. 

Example 7.6: If G1 is a C4 with an attached pendant vertex, G1 is the unique 

leading subgraph in the first phase. This graph too has three phases, with 

K = K1,3 the unique leading subgraph for the second phase n -1/2 < p <_ n -1/3. 

Here m = 1, A = 3, Q1 = A = (5/3, 5/3), Q2 = B = (4/3, 1), C = (3/2, 3/2), 

Q3 = D = (2, 3), zl = 1, z2 = 1/2, z3 = 1/3. 

If G2 is a C4 with a path of length 2 attached, the unique leading subgraph in 

the first phase is the subgraph G1. In fact, G2 has the same phases and leading 

subgraphs, and indeed the same L(z), as G1. Hence also m, A, A, B, C, D, Qi 

and zi are the same as for G1. 

3 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Figure 3. Subgraph plot for Example 7.7. E* is shaded. 
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Example 7.7: Let G be the "kite graph", formed of a copy of K4 without 

one edge e and a pendant edge attached at a vertex not adjacent to e. We have 

m = 5/4, A = 4, Q1 = A -- (2, 5/2), Q3 -- g = (5/4, 1), C = (16/11, 20/11) and 

Q4 = D = (2,4); in addition, Q2 = (5/3,2) and zl = 4/5, z2 = 2/3, z3 = 5/12, 

z4 = 1/4. This graph has four phases, and the three leading subgraphs are 

K4 - e, G and K = K1,4 (all unique). The subgraph plot (connected subgraphs 

only) is shown in Figure 3. 

T.3. GRAPHS WITH MANY PHASES. Our last example describes an infinite 

family of trees T1 ,T2 , . . . ,  such that  for every integer k _> 2 the tree T k has 

k + 1 phases for the upper tail. (For the lower tail, graphs with arbitrarily many 

phases were constructed in [21]. These are not trees, since a tree has only two 

phases for the lower tail.) 

Example 7.8: Let T k be the tree obtained by taking k stars K14, i = 1 , . . .  k, 

and tying them up by merging one pendant vertex from each star into one 

vertex. The knot vertex then has k neighbors v l , . . . ,  Vk, and each vi is, in turn, 

attached to i - 1 leaves. The total number of vertices is 1 + k + (~). We may 

call T k a star cluster. 

It is convenient to label the vertices by 1 , . . . ,  1 + k + (~), in the depth-first 

manner, beginning with the knot and searching the stars in order of decreasing 

size, i.e. taking the knot, then Vk followed by its attached leaves, then Vk-1 

followed by its leaves, and so on until vl. Figure 4 presents T 4 and the labelling 

of its vertices. 

1 

2 ~ 1 1  

3 4 5 7 8 10 

Figure 4. The tree T 4 with 5 phases. 

PROPOSITION 7.9: For every k >_ 2, the graph T k described above has k + 1 

phases for the upper tail 

Proof: By Remark 1.6, it is enough to consider only connected subgraphs of 

T = T k, that  is, subtrees. Moreover, as is the case for all bipartite graphs, for 

trees c~* = a - -  the size of the largest independent set. So, if H is a subtree with 
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h vertices, then ~H = (nhpa-1)  1 / ~  , and the minimum of ~H over all H with 

given h is obtained by maximizing al l .  Let a(h) := maxc~H over all subgraphs 

H of T with vH = h. Furthermore, let Q~ = ( h / a ( h ) ,  (h - 1)/c~(h)). In the 

upper tail subgraph plot, we thus only have to consider the points Q~ , . . . ,  Q~,, 

where v = VT. 

Let Th be the subtree of T induced by the vertices 1 , . . . ,  h (in the labelling 

described in Example 7.8). It is straightforward to show that  for each h = 

1 , . . . ,  v, we have a(h)  = aTh = h - d(h),  where d(h) is the degree in Th of the 

knot. (A maximal independent set in Th is obtained by taking all vertices of Th 

except the v~'s.) 

Let us now distinguish those numbers h among 1 , . . . ,  v for which Th consists 

of a number of complete stars in T, i.e. define 

h( j )  = 1 + k + ( k -  1) + . . .  + ( k -  j + 1) = 1 + k j -  j ( j  - 1)/2, 

j = 0 , . . . ,  k. We thus have (~(h(j)) = h( j )  - j .  

Note that  if h is not of the form h( j ) ,  one has c~(h + 1) = a(h) + 1; it follows 

by a simple calculation that  Q~ lies to the right of Q* and that  the slope from h+l  

Q~+I to Q* h is 
h -  (~(h) - 1 d(h) - 1 v -  1 

- -  - - ~  - - m .  
h - a(h)  d(h) v 

This means that  for such h, the points Q~ do not appear as extreme points 

of the convex hull E*; consequently, the extreme points Qi in the upper tail 

subgraph plot are among the points Q* h(j), J = 1 , . . . , k .  We will now show 

that  these points lie on a (strictly) concave curve, proving that  all these points 

are extreme points and that  T thus has k + 1 phases, given by them and by 

D -- (2, k); more precisely, Qi = Q*h(k+l-i), 1 < i < k. It will also follow that  

Th(kTl_j) is a leading subgraph for the i-th phase. (Except for the first phase, 

the leading subgraph is not unique.) 

To see that  the points Q*h(y), J = 0 , . . . ,  k, lie on a concave curve, regard 

h(t) := 1 + (k + 1/2)t - t2/2 as a function of a real variable t, define x( t )  -- 

h ( t ) / ( h ( t )  - t )  and y(t)  = (h(t) - 1 ) / (h( t )  - t )  and note that  Q*h(j) = (x( j ) ,  y ( j )  ). 

For t E [0, k] we have h(t) - t > 0, and by standard calculus, d x / d t  > 0 and 

d y / d x  = ( d y / d t ) / ( d x / d t )  = 1 + (k - 1/2 - t)/(1 + t2/2).  

Hence, x is an increasing function of t, d y / d x  is a decreasing function of t, and 

thus d y / d x  is a decreasing function of x, showing that  y is a strictly concave 

function of x. | 
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8. F u r t h e r  r e m a r k s  

Isr. J. Math. 

Remark 8.1: The main remaining problem for the upper tail, as we see it, is 

the gap between the upper and lower bounds in Theorem 1.2. For constant t, 

the gap amounts to a factor O(log(1/p)) in the exponent. In a few special cases, 

we can say more. 

When G = /(2, and more generally in the rather trivial case when G is a 

matching, it is easy to see that  for p >_ n -1~too = n -2, there is a lower bound 

exp{-C(t ,G)M~(n,p)}  of the same type as the upper bound. In particular, 

the lower bound in Theorem 1.2 is not sharp for these graphs. 

In the case when p is below the threshold n -1/ma, we have M* = 0(1) ,  our 

upper bound is O(1), and the lower bound is pO(1). On the other hand, at least 

for balanced G, the correct probability is just P(Xa  > 0), which, by the result 

of [10], see (1.1), is O(EXa) .  Indeed, when E X a  < 1/t, to have more than 

tEXa  copies of G is the same as to have at least one. Thus the upper bound 

is not sharp here, but the case when 1 is much more than tEXa  is not very 

interesting. 

Returning to the case when E X a  is large, it is shown in [13] that  for G = / ( 4  

and n -2/a logl/6 n << p <_ n -1/2-e, there is an upper bound 

P(Xa  >_ 2EXa)  _< exp{-cM~(n,p)log 1/2 n}, 

which is half-way (on a doubly logarithmic scale) between the upper and lower 

bounds in Theorem 1.2. Hence the upper bound in Theorem 1.2 is not sharp 

in this case. The same holds for G = C4 in a similar range. The proof uses 

a different method than the present paper and does not easily extend to other 

graphs. We do not know exactly what happens for K4 when p >_ n -1/2. 
These examples show that  neither the upper nor lower bound in Theorem 1.2 

is sharp in general. 

Remark 8.2: Our proof of the upper bound in Theorem 1.2 yields the estimate 

c(t,G) = f~ ( t -1 )  2 for 1 < t <__ 2, a n d c ( t , G )  = fl(logt) for t _> 2. Using a 

version of Lemma 2.1 for ml  > m2, the latter can easily be improved to 

(s.1) C(~;, G) ~-- ~-~(t 1/maxHc-a a~ ), t ~ 2. 

Note that  for the trivial case G = K2, when Xa has a binomial distribution, 

the upper bound in Theorem 1.2 is optimal (assuming p and t are not too 

extreme), with c(t,G) = O(t - 1) 2 for 1 < t _< 2 and c(t,G) = O(t logt )  for 

t _> 2. It follows that  if G is a matching with j disjoint edges, then c(t, G) can 



Vol. 142, 2004 U P P E R  TAILS FOR SUBGRAPH COUNTS IN RANDOM GRAPHS 87 

be at most c(t ,G) = O(t 1/j logt) for t _> 2. This suggests that  the best c(t ,G) 

for large t in general might be of the form (8.1), possibly with an additional 

factor log t, but we have no proof of that.  

Our proof of the lower bound yields C(t, G) = O(t), but we have not investi- 

gated this constant further. 

Remark 8.3: It follows from our results that  the upper tail probabilities typi- 

cally are larger than the lower tail probabilities in (1.1). More precisely, suppose 

that  AG > 2 and that  n --+ oc and p --+ 0 with p >> n -1~me (i.e. pn -1~me --+ co). 

Then 

(8.2) M* a << rain kOH. 
H~G,eH >O 

This can be shown directly from Definition (1.2), but we use instead Theorem 

1.5: 

Let H C G with eu > 0. First, consider the case n -1ling << p < n -1/Ac.  If 

* ~l'l/~;z On the c~ H > 1 we have, since p >> n -UmG implies q/~ -4 oc, qJH >> ~H �9 

other hand, the only H with eH > 0 and c~/ < 1 is H = K2. In this case, let 

S -- K1,A G be a maximal star in G and note that  

~ H  ~-- n2P >> nl+I/AGP = ~l/a*K x g 

Hence, minH kOg > m i n H  q2~ a~ = O(M~).  

In the case n -1/~G ~ p << 1, we note that  e H <  A e v g / 2 .  Thus, if VH > 2, 

~H ~_ nVnp / ' c ' ' / 2  ---- (n2PaG) ~' /e  >> n2p Ac = O(M~).  

The remaining case is again H = K2, but then 

~H = n2P >> n2p Ac = O(M~).  

Hence (8.2) holds for n - U m c  << p << 1, which shows that  the bound for 

the lower tail in (1.1) is smaller than the upper bound for the upper tail in 

Theorem 1.2. It is easily seen by arguments as above that  if we further require 

n - U m c  logn << p << 1, then also the lower bound in Theorem 1.2 is larger than 

(1.1), so the two tails are of different orders. 

A heuristic reason for the difference is that  it is possible to create many copies 

of G using comparatively few excess edges, as in our construction in Section 3, 

while there seems to be no similar way to greatly reduce the number of copies 

by deleting rather few edges. 



88 S. JANSON, K. OLESZKIEWICZ AND A. RUCII~ISKI Isr. J. Math. 

Remark 8.4: As mentioned in the introduction, Spencer [22], see also [2, w 

and [23, w studied a generalization of subgraph counts XG, viz. the number 

of extensions isomorphic to G of a given set of vertices in G(n,p). Although 

we have not examined this more general problem, we believe that our methods 

apply here too. 

Remark 8.5: Alon's result in [1], which is the case n _> m of our Theorem 1.3, 

was extended to hypergraphs by Friedgut and Kahn [7]. We guess that Theorem 

1.3 too has an extension to hypergraphs, in particular, since we use the method 

of proof in [7]. However, we have not pursued this. 

Problem 8.6: Graphs with arbitrarily many phases were constructed in 

Example 7.8 above. How many phases are possible for graphs with a given 

number of vertices? (For the lower tail, see [21].) 

Appendix A. Fractional independence number 

For a given graph H, the fractional independence number of H, denoted by c~/, 

is the largest value of ~ v  av over all assignments of weights c~v E [0, 1] to the 

vertices of H satisfying the condition c~v + c~u _< 1 for all edges uv of H. It 

follows immediately from this definition that if CH > 0 then 

(A.1) 1 < v ~ / 2  <_ ~*. < vH - 1. 

The upper bound can be strengthened. 

LEMMA A .  1 : For every graph H with CH > O, 

, eH 
(A.2) O~ g < VH -- A H .  

Proof: For any feasible assignment of weights av to V(H), if dH(v) is the 

degree of v in H, 

eH <_ E (I--c~,+I--c~)= E dH(v)(l--c~v) 
vueE(H)  v6V(H)  

E 
veV(H) v 

Taking an optimal assignment, we obtain (A.2). | 

For regular graphs, the lower bound in (A.1) and the upper in (A.2) coincide, 

so we have a simple formula: 
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LEMMA A.2: If  the graph H is regular and etj > 0, then 

a H -~ VH/2. | 

Note that the bound in (A.2) also is achieved by, among others, stars and 

paths of even length. Incidently, in both these cases, a ~  is just equal to the 

independence number all ,  that is, there is a 0-1 optimal assignment. It is well- 

known that every vertex of the polytope defined by xv >_ 0 (v E V(H))  and 

xv + x~ <_ 1 (uv E E(H))  is half-integral, and consequently a ~  can always be 

realized by an optimal assignment with av E {0, 1 ~, 1}. (This result is sometimes 

attributed to Lovs who, however, denies it, saying that it was already folklore 

before.) It is characteristic of all bipartite graphs that a~  has an integral 

solution (but there are, clearly, non-bipartite graphs, like the one in Example 

7.5, for which this is true as well). 

PROPOSITION A.3: If  H is bipartite, then a* H = all. 

Proof'. If H has isolated vertices, they contribute equally to both parameters. 

So, assume that the minimum degree 5H > 1, and consider the dual problem 

of minimizing ~ e  Pe over all assignments of weights pe E [0, 1] satisfying the 

condition ~e~v P~ >- 1 for all vertices v of H. This minimum value is denoted 

by p~ and called the fractional edge covering number. By the duality theorem 

of linear programming (see, e.g., [16]) a~  = p~ for all graphs H. Trivially, we 

also have PH ~ p~ = a~  > C~H, where PH is the edge covering number of H, 
i.e. the smallest number of edges of H whose union is V(H).  But, for bipartite 

graphs H, as a consequence of Gallai's Theorem, we have in fact a H =  pH (see, 

e.g., Corollary 1.1.7 in [16]), which implies that indeed a ~  = a l l .  m 

Finally, let us characterize the graphs for which a~  = VH/2. By Lemma 

A.2, all regular graphs are among them (and in fact, every graph with a regular 

spanning subgraph). A perfect 2-matching of a graph H (see [16], page 216) is 

a spanning subgraph of H whose every component is either a cycle or an edge. 

The following result is implicit in [1], but it can also be deduced from [16]. 

Here we provide a simple proof based on the fact that a graph has a perfect 

2-matching if and only if it satisfies the Hall condition that every independent 

set A of vertices has at least IAI neighbors - -  see Corollary 6.1.5 in [16]. (Note 

that for regular graphs this condition holds.) 

PROPOSITION A.4: We have a* H = VH/2 if and only if H has a perfect 2- 
matching. 
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Proof: If an independent set A violates the Hall condition then assign 1 to 

1 otherwise. This is a feasible all vertices in A, 0 to all neighbors of A and 

assignment of total weight greater than VH/2. Conversely, if a ~  > VH/2, then, 

in an optimal, half-integral assignment, the set A of vertices with weight 1 

must have bigger size than the set B of vertices with weight 0. But A is an 

independent set with no neighbors outside B. | 

Alternatively, Proposition A.4 can be proved without invoking Hall's condi- 

tion, by using instead the duality theorem and the fact that  p~ can also be 

realized by a half-integral assignment. 

A p p e n d i x  B. A n  app l i ca t ion  of  u p p e r  tail 

The following illustration is a simplified form of a problem appearing in [8] (see 

also [12]). The main difference is that  here we deal with induced subgraphs of 

a random graph, while the real problem in [8] involves non-induced subgraphs, 

and so a regularity lemma for sparse graphs has to be used in order to count 

the edges. 

Given a graph G, its base B(G) is defined as the graph with vertex set V(G) 
and the edges taken as all pairs {u, v} such that  for some w E V(G) we have 

uw, vw E E(G). It is straightforward to prove that  if, say, p > (2.1 logn/n) 1/2 
then, a.a.s. B(G(n,p)) = Kn, while already for p = O(1/v~) ,  we have a.a.s. 

B = O(n2), where we for simplicity write B := e(B(G(n,p))). 

Does the last estimate hold for all sufficiently large induced subgraphs of 

G(n,p), say of size n/2? As there are roughly 2 n such subgraphs, it is sufficient 

to show that  if a > 0, the random graph G(n/2,p), or, equivalently, G(n,p), 
where p = a/vf~, satisfies B = O(n 2) with probability at least 1 -o (2 -n ) .  Below 

we provide a short proof of this fact based on our upper tail estimate. 

Let M be the number of edges and let X = Xc4 be the number of 4-cycles C4 

in G(n,p). Furthermore, let Dv be the degree of vertex v and Tuv the number of 

"tepees" over uv, that  is, the number of vertices w such that  uw, vw are edges 

of G(n, p). Then, by double counting and convexity of (~), we have, provided 

M >_n, 

= vZ > 

and then either B > M2/2n or ~uv T~v/B >_ M2/nB >_ 2. In the latter case 
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we similarly have 

2 x =  v > B E v / B  > 4Bn2, 
u v  

where the sums ~uv  are taken over all pairs uv with Tuv > 0, and thus have 

precisely B terms. Hence (still deterministically), if M _> n, 

B>_min 8--~-X' 2n " 

By Chernoff's bound (see, e.g., [11]), M >_ n2p/3 with probability at least 

1 - e -~ Noticing that  E X  = O(n4p4), all we need to complete the proof 

is a bound of the form P ( X  _> t E X )  <_ e -n ,  which is provided by our Theorem 

1.2 (upper bound) with t constant and large enough (see Remark 8.2) together 

with Corollary 1.7. 
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